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The Human Phenotype Ontology: A Tool for Annotating
and Analyzing Human Hereditary Disease

Peter N. Robinson,1,2,* Sebastian Köhler,1,2 Sebastian Bauer,1 Dominik Seelow,1,3 Denise Horn,1

and Stefan Mundlos1,2,4

There are many thousands of hereditary diseases in humans, each of which has a specific combination of phenotypic features, but

computational analysis of phenotypic data has been hampered by lack of adequate computational data structures. Therefore, we

have developed a Human Phenotype Ontology (HPO) with over 8000 terms representing individual phenotypic anomalies and have

annotated all clinical entries in Online Mendelian Inheritance in Man with the terms of the HPO. We show that the HPO is able to

capture phenotypic similarities between diseases in a useful and highly significant fashion.
Analysis of the phenotypic correlates of gene mutations

has long been an essential method for discovering biolog-

ical functions of genes, and more recently, computational

analysis of mouse phenotypes related to gene mutations

has become possible with tools such as the Mammalian

Phenotype Ontology.1,2 Phenotypic analysis has played

a central role in the mapping of disease genes and many

other fields, and humans are particularly good at recogniz-

ing human phenotypic traits and anomalies. However,

there are a number of unresolved issues surrounding

the computational description and analysis of human

phenotypes.

It seems intuitively clear that certain hereditary disorders

are phenotypically similar to one another because of

shared phenotypic features. For instance, one might say

that Marfan syndrome (MIM 154700) and congenital

contractural arachnodactyly (MIM 121050) are similar

because they share a range of skeletal abnormalities, and

in fact the genes mutated in these syndromes, FBN1 and

FBN2, belong to the same gene family and share a number

of functional similarities.3 The observation that many ge-

netic conditions show overlapping features led to the con-

cept of disease families.4,5 Phenotypic similarities within

disease families may be related to dysfunction of a regula-

tory network, such as a signaling pathway or a biochemical

module, as has been demonstrated for Noonan syndrome

(MIM 163950) and related disorders.6 Thus, phenotypic

analysis is of great importance for our understanding of

the physiology and pathophysiology of cellular networks

because it can offer clues about groups of genes that

together make up pathways or modules, in which dysfunc-

tion can lead to similar phenotypic consequences. A num-

ber of recent works have suggested the enormous potential

of correlating phenotype to features of genetic or cellular

networks on a genome-wide scale.7–9

The great majority of human Mendelian syndromes

have been described in detail in the Online Mendelian

Inheritance in Man (OMIM) database,10 and hierarchical
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systems based on the clinical descriptions in OMIM have

been generated by text mining.11–13 However, computa-

tional analysis of the data contained in OMIM has so far

been hampered by the lack of a controlled vocabulary

including consistent annotations with well-defined rela-

tionships to one another. For instance, the descriptions

‘‘generalized amyotrophy,’’ ‘‘generalized muscle atrophy,’’

‘‘muscular atrophy, generalized,’’ and ‘‘muscle atrophy,

generalized’’ are used to describe different diseases in

OMIM and might not be easily recognized as synonyms

with a purely computational approach. Also, although

the clinical-synopsis entries in OMIM are grouped accord-

ing to organ system, the hierarchical structure does not

itself reflect that (for instance) ‘‘Hypoplastic philtrum’’

and ‘‘Smooth philtrum’’ are more closely related to one

another than to ‘‘Hypoplastic nasal septum’’ (all three of

these descriptions are in the NOSE category of OMIM’s

clinical synopsis).

An ontology is a data model that represents concepts, at-

tributes, and relationships in the form of a directed acyclic

graph. The Gene Ontology (GO), especially, has proven to

be extremely useful for the exploratory analysis of microar-

ray and other forms of high-throughput data.14 A number

of considerations suggest that an ontological description of

human phenotypes has distinct advantages; this prompted

us to develop an ontology to describe human phenotypic

abnormalities.

The Human Phenotype Ontology (HPO) was con-

structed with the goal of covering all phenotypic abnor-

malities that are commonly encountered in human

monogenic diseases. To this end, the ‘‘omim.txt’’ file was

downloaded from the OMIM database.10 We developed

a suite of Java programs and Perl scripts to parse omim.txt

in order to extract the textual descriptions of each disease

as listed in the Clinical Synopsis section, which is ordered

in a hierarchical fashion. For instance, in the description of

Marfan syndrome, aortic root dilatation is listed under the

category CARDIOVASCULAR, subcategory Vascular. We
1Institute for Medical Genetics, 2Berlin-Brandenburg Center for Regenerative Therapies, 3Department of Neuropaediatrics, Charité-Universitätsmedizin
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Figure 1. The Human Phenotype Ontology
The HPO term Bilateral congenital hip dislocation and all paths to the root that emanate from this term are shown. Some of the annotated
disease entries from OMIM, as well as the total number of annotated diseases, are shown next to the terms. Note that because of the
true-path rule, a disease that is directly annotated to a specific term is also implicitly annotated to all ancestors of that term. For
instance, Ehlers Danlos syndrome type VII is directly annotated to Bilateral congenital hip dislocation and is thereby implicitly annotated
to Abnormality of the hips, Dislocations, and the other terms shown in the figure.
then generated a list of these features, sorted according to

the frequency of occurrence. For instance, aortic root dilata-

tion is listed for a number of diseases other than Marfan

syndrome, including Ehlers-Danlos syndrome, type I

(MIM 130000). On the other hand, Medial rotation of the

medial malleolus is used only once (for Marfan syndrome)

in all of omim.txt.

The HPO was then constructed with OBO-Edit15 in order

to define terms and the links between them on the basis of

the list of descriptions from omim.txt. For all descriptions

that occurred more than once in omim.txt, we created

a term in the HPO. One of the main difficulties in using

data from OMIM in computational analysis is that

OMIM does not use a controlled vocabulary, and it can

be difficult to recognize synonyms by computational

means. Therefore, we manually curated each term, taking

advantage of domain knowledge in human genetics

(PNR, DH, SM) in order to merge synonyms into unique

HPO terms. For instance, the three OMIM descriptions

Carpal bone hypoplasia, Hypoplasia of carpal bones, and

Hypoplastic carpal bones were fused into the single term
The America
HP:0001498, Carpal bone hypoplasia. We additionally adap-

ted the Smith-Waterman algorithm16 to map additional

descriptions that were used only once in omim.txt as syn-

onyms or children of HPO terms. However, each mapping

proposed by this algorithm was examined by hand before

incorporation into the HPO. Domain knowledge was also

used to define more general terms, such as Aplasia/hypopla-

sia of the outer ear, to group more specific terms, as well as to

define links between individual terms.

Each term in the HPO describes a phenotypic abnormal-

ity, such as Atrial septum defect. Terms are related to parent

terms by ‘‘is a’’ relationships. The structure of the HPO,

which allows a term to have multiple parent terms, enables

different aspects of phenotypic abnormalities to be ex-

plored (see Figure 1 for an example). The HPO itself does

not describe individual disease entities but, rather, the phe-

notypic abnormalities associated with them. The majority

of the HPO terms describe organ abnormalities, but sepa-

rate ontologies are provided for describing the mode of

inheritance and the onset and clinical course. We have

used the HPO terms to annotate all entries of OMIM
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Figure 2. Applications of the HPO
(A) Visualization of the human phenome. Each of 727 diseases listed in OMIM for which a disorder class was defined is shown as a node in
the graph and is colored according to membership in a set of 21 predefined disorder classes, defined on the basis of the physiological
system.7 The organic layout algorithm of Cytoscape27 was used for showing the clustered structure of the phenotypic network. Connec-
tions between nodes are shown starting from a similarity score of 4.5, whereby the thickness of the connection reflects the degree of
phenotypic similarity. Abbreviations are as follows: CV, cardiovascular; derma, dermatological; endo, endocrinological; heme, hemato-
logical; immuno, immunological; metab, metabolic; neuro, neurological; ophth, ophthalmological.
(B) Analysis of randomized phenotypic networks. In order to estimate the probability that this result could be due to chance, we created
10,000 random networks in which edges were randomly rewired 2000 times.28 The mean network score of the random nets was 0.182 5

0.0098. Thus, the actual score of 0.645 was 47.2 standard deviations above the mean random score.
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with a clinical-synopsis section. Clinical entities are anno-

tated to the most specific terms possible. The true-path

rule17 applies to the terms of the HPO. That is, if a disease

is annotated to the term Atrial septal defect, then all of the

ancestors of this term, such as Abnormality of the cardiac

septa, also apply. The structure of the HPO, therefore,

allows flexible searches for disease entities according to

phenotypic abnormalities, with a broad or narrow focus.

We will now show that an ontological similarity measure

defines a useful and highly significant phenotypic-similar-

ity metric among hereditary diseases listed in OMIM. In

the HPO, as in GO, terms that are closer to the root of

the ontology represent more general concepts than do

terms that are farther away from the root. (For instance,

in Figure 1, the term Abnormality of the joints is more gen-

eral than the term Congenital hip dislocation.) The informa-

tion content of each node in the HPO can be estimated

through its frequency among annotations of the entire

OMIM corpus. In our implementation, the information

content of a term is based on the frequency of annotations

to that term among the 4779 diseases in the OMIM data-

base that were annotated to terms of the HPO. Intuitively,

if two diseases are both annotated to a term with high

information content, such as Calcific stippling, then the

degree of similarity calculated on the basis of this should

be higher than that calculated when the two diseases are

both annotated to a more general term, such as Abnormal-

ity of the musculoskeletal system, which has a lower informa-

tion content.

For each term t of the HPO, the information content is

quantified as the negative logarithm of its probability:

�logp(t), in which the probability of a term is taken to be

its frequency among annotations to all 4779 annotated

diseases. If a disease is annotated to any term t in the

HPO, it must also be annotated to all the ancestors of

t. Therefore, the higher in the ontology a term is located,

the lesser its information content. Resnik18 introduced

a similarity measure for two terms in an ontology that is

based on their shared information content, which is given

by the information content in the set of their common-

ancestor nodes. In the case of HPO, a term might have

multiple parent terms, so that a pair of terms might have

more than one path of common ancestors. Denoting the

set of all common-ancestor terms of terms t1 and t2 as

A(t1, t2), we define the similarity between two terms, t1
and t2, as

simðt1,t2Þ ¼ max
a˛Aðt1,t2Þ

�log pðaÞ, (1)
The America
which defines the probability of the minimum common

ancestor of t1 and t2. Individual diseases are usually anno-

tated to multiple phenotypic features. In order to calculate

the similarity between two diseases, d1 and d2, we adapt

a method previously developed for estimating protein sim-

ilarity with GO,19 whereby each feature of d1 is matched

with the most similar feature of d2 and the average is taken

over all such pairs of features:

simðd1/d2Þ ¼ avg

"X
s˛d1

max
ted2

simðs,tÞ
#
: (2)

Because Equation (2) is not symmetric with respect to d1

and d2, the final similarity metric is defined as the mean of

Equation (2) taken in both orientations:

simðd1,d2Þ ¼
1

2
3 simðd1/d2Þ þ

1

2
3 simðd2/d1Þ: (3)

This metric can now be used to define the similarity

between two diseases, each of which is annotated to

multiple terms of the HPO.

We used this measure to define similarity between the

diseases listed in the OMIM database. We analyzed 727

diseases belonging to one of 21 physiological-disorder

classes.7 Phenotypic relationships between these diseases

are shown by the linking of all pairs of diseases exceeding

a threshold similarity score (Figure 2A). Although gener-

ated independently of the disorder classes, the resulting

phenotypic network clearly displays clusters correspond-

ing to many of the 21 classes. It is also apparent that

some of the clusters show interconnections between one

another, which were not visible in the disease map based

only on shared disease genes.7 For instance, hematological

disorders are strongly connected to immunological disor-

ders, bone disorders are strongly connected to skeletal

disorders, and neurological, muscular, and psychiatric

disorders are multiply linked to one another. Also, diseases

that cluster together with diseases from a different physio-

logical class share important phenotypic similarities with

that class. For instance, all four diseases that are from the

metabolic class and are located in the muscle cluster (Eno-

lase-beta deficiency, MCardle disease, dimethylglycine

dehydrogenase deficiency, and elevated serum creatine

phosphokinase) show important muscular symptoms (Fig-

ure 2A). Analysis of randomized networks showed that the

observed correlation between network connections and

disease class is highly significant (Figure 2B). Thus, this

phenotypic network, as defined by the HPO, is made up
(C) Searching the HPO. All 2116 diseases listed in OMIM with at least six HPO annotations were identified and included in the analysis. For
each disease, between 1 and 6 of the most specific terms to which the disease is annotated in the HPO were used for the search
(‘‘Annotated terms’’). The set of clinical features determined in this way was then used for querying the entire set of OMIM diseases
for the best match. The average rank of the original disease among the diseases identified by the search for different proportions of
removed terms is shown. In separate experiments, each of these terms was mapped to a parent term or 50% unrelated (‘‘noise’’) terms
were added (rounded up for odd numbers of terms; i.e., one noise term was added to searches with one term, two noise terms to searches
with three terms, and three noise terms to searches with five terms).
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of dense clusters of shared phenotypic features that show

characteristic patterns of interconnections between

selected areas of the phenotypic continuum.

Next, we explored the utility of using the HPO in a clinical

setting. Combinations of features are often used in medical

genetics in the search for a clinical diagnosis. This can be

a challenging undertaking, given the large number of

hereditary disorders and the range of partially overlapping

clinical features associated with them. Clinicians may be

able to describe clinical features in varying levels of detail.

Also, an individual patient with a hereditary disease might

not show all of the features that are potentially associated

with a disorder, or he or she may have additional features

unrelated to the disorder. Optimally, diagnostic algorithms

will allow searches at varying levels of detail, weigh specific

features more highly than general features, and not be

overly sensitive to the fact that individual features might

not be present in an individual patient. An ontological

approach, therefore, appears to be particularly appropriate

in this setting. To simulate this kind of search process, we

used the 2116 diseases in OMIM annotated to at least six

HPO terms to simulate a clinical-search process by selecting

only 1–6 of the terms associated with a given disease and

then searching in the original database for similar diseases.

Optimally, the search algorithm will assign the original

disease the highest rank or at least place it among the first

few diseases. As can be seen in Figure 2C, there was excellent

performance, even when only two search terms were used,

with relatively small reductions in accuracy when 50% of

random noise terms were added to the search terms or

when each of the terms was mapped to a (less specific)

parent term. This suggests that the HPO is able to capture

phenotypic similarity at various levels of granularity and

that the calculation of similarity is not overly sensitive to

noise, completeness, or specificity of the set of phenotypic

terms used for the search.

Previous efforts at computational analysis of phenotypic

data in human hereditary disease have involved various

strategies for automated text mining of OMIM. A number

of works have used MeSH terms or Unified Medical

Language System (UMLS) concepts to map phenotypic con-

cepts from medline or OMIM.13,20–22 Most of these works

used the text-mined concepts to create feature vectors in

order to describe diseases. That is, a feature vector for a given

disease contains one entry for each concept, set to 1 if the

concept is found in the disease and to 0 otherwise. Similar-

ity is often measured by some variation of the normalized

cosine angle between normalized feature vector pairs.22

Although these works were successful, we contend that

a manually curated ontological approach to computational

phenotype analysis offers a number of advantages. One dif-

ficulty with text-mining approaches is that the MeSH and

UMLS indexing terms are not specifically designed for the

needs of describing human hereditary diseases and their

phenotypes. For instance, only 34% of 1700 diseases with

a specific phenotype associated with a specific gene in

OMIM could be specifically mapped to concepts in the
614 The American Journal of Human Genetics 83, 610–615, Novemb
UMLS.23 One advantage of the HPO is that the terms and

structure of the ontology are based on medical knowledge

rather than on text-mining systems. The HPO will be

refined and extended in the future. An ontology as a data

structure has several distinct advantages over other kinds

of data structure that have been used for phenotypic analy-

sis. One of the main reasons for the success of GO is the

greater flexibility and descriptive power of ontologies

compared to hierarchical systems and feature vectors,14

including the ability to relate concepts (terms) to multiple

parents and to allow descriptions and queries at different

levelsofgranularityandcompleteness.Additionally, anum-

ber of computational algorithms have been developed for

ontological analysis after the success of GO (e.g., 19,24,25)

and can now be applied to human phenotype data.

The value of data is greatly increased as sources of data

are enabled to be integrated with one another. We have de-

signed the HPO using the widely used OBO format.26 This

file, together with a flat file with annotations of 4779 dis-

eases listed in OMIM to the terms of the HPO, is freely

available for download from the HPO web site, which

also describes the background and goals of the project.

The HPO is participating in the OBO Foundry project,26

and the files are available for download there as well. We

anticipate that the HPO will continue to evolve over

many years and are currently recruiting collaborators to

refine specific areas of the HPO, to improve annotations

to disorders listed in OMIM, and to extend the annotations

to other hereditary disorders, such as microdeletion syn-

dromes and chromosomal aberrations. We plan to include

additional information, including frequency and severity

of features, in the annotation files. It is hoped that the

HPO will provide a basis for computational biomedical

research involving human phenotype analysis, allowing

the human phenome to be related to the molecular patho-

physiology of the cell by directly linking the human

phenome to sources of data such as protein-protein inter-

actions, metabolic and signal-transduction pathways, and

gene coexpression. Additionally, we anticipate that the

HPO will provide a unified basis for clinical research in

medical genetics by providing a standardized vocabulary

for the description of phenotypes.
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The Gene Ontology (GO), http://www.geneontology.org/

The Human Phenotype Ontology, http://www.

human-phenotype-ontology.org

The Obo Foundry, http://obofoundry.org

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.

nlm.nih.gov/Omim/

References

1. Smith, C.L., Goldsmith, C.-A.W., and Eppig, J.T. (2005). The

Mammalian Phenotype Ontology as a tool for annotating,

analyzing and comparing phenotypic information. Genome

Biol. 6, R7.

2. Lussier, Y.A., and Liu, Y. (2007). Computational approaches to

phenotyping: high-throughput phenomics. Proc. Am. Thorac.

Soc. 4, 18–25.

3. Robinson, P.N., Arteaga-Solis, E., Baldock, C., Collod-Broud, G.,

Booms, P., Paepe, A.D., Dietz, H.C., Guo, G., Handford, P.A.,

Judge, D.P., et al. (2006). The molecular genetics of Marfan

syndrome and related disorders. J. Med. Genet. 43, 769–787.

4. Brunner, H.G., and van Driel, M.A. (2004). From syndrome

families to functional genomics. Nat. Rev. Genet. 5, 545–551.

5. Oti, M., and Brunner, H. (2007). The modular nature of

genetic diseases. Clin. Genet. 71, 1–11.

6. Gelb, B.D., and Tartaglia, M. (2006). Noonan syndrome and

related disorders: Dysregulated RAS-mitogen activated protein

kinase signal transduction. Hum Mol Genet 15 Spec No 2,

R220–R226.

7. Goh, K.-I., Cusick, M.E., Valle, D., Childs, B., Vidal, M., and

Barabsi, A.-L. (2007). The human disease network. Proc.

Natl. Acad. Sci. USA 104, 8685–8690.

8. Feldman, I., Rzhetsky, A., and Vitkup, D. (2008). Network

properties of genes harboring inherited disease mutations.

Proc. Natl. Acad. Sci. USA 105, 4323–4328.
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